
Phased Array System Toolbox™

Getting Started Guide

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Phased Array System Toolbox™ Getting Started Guide
© COPYRIGHT 2011–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

April 2011 Online only New for Version 1.0 (R2011a)
September 2011 Online only Revised for Version 1.1 (R2011b)
March 2012 Online only Revised for Version 1.2 (R2012a)
September 2012 Online only Revised for Version 1.3 (R2012b)
March 2013 Online only Revised for Version 2.0 (R2013a)
September 2013 Online only Revised for Version 2.1 (R2013b)
March 2014 Online only Revised for Version 2.2 (R2014a)
October 2014 Online only Revised for Version 2.3 (R2014b)
March 2015 Online only Revised for Version 3.0 (R2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Getting Started with Phased Array System Toolbox
Software

1
Phased Array System Toolbox Product Description 1-2

Key Features . 1-2

Limitations . 1-3
MATLAB Compiler Support . 1-3
Code Generation Support . 1-3

Standards and Conventions . 1-4
Scope of Standards and Conventions 1-4
Complex-Valued Baseband Signals . 1-4
Data Organization of Baseband Signals 1-5
Spatial Coordinates . 1-5
Physical Quantities . 1-5
Supported Data Types . 1-5

Phased Array Systems
2

System Overviews . 2-2
Phased Array System Overview . 2-2
Phased Array Radar Overview . 2-4

iv Contents

Radar Data Cube, Units, and Physical Constants
3

Radar Data Cube . 3-2
Radar Data Cube Concept . 3-2
Fast Time Samples . 3-3
Slow Time Samples . 3-4
Spatial Sampling . 3-4
Space-Time Processing . 3-4
Organizing Data in the Radar Data Cube 3-5

Units of Measure and Physical Constants 3-7
Units of Measure . 3-7
Physical Constants . 3-7

System Objects
4

What Is a System Toolbox? . 4-2

What Are System Objects? . 4-3

System Objects vs. MATLAB Functions 4-5
System Objects vs. MATLAB Functions 4-5
Process Audio Data Using Only MATLAB Functions Code . . 4-5
Process Audio Data Using System Objects 4-6

System Design and Simulation in MATLAB 4-8

System Objects in MATLAB Code Generation 4-9
System Objects in Generated Code . 4-9
System Objects in codegen . 4-11
System Objects in the MATLAB Function Block 4-12
System Objects and MATLAB Compiler Software 4-12

System Objects in Simulink . 4-13
System Objects in the MATLAB Function Block 4-13

v

System Object Methods . 4-14
What Are System Object Methods? 4-14
The Step Method . 4-14
Common Methods . 4-16

System Design in MATLAB Using System Objects 4-18
Create Components for Your System 4-18
Configure Components for Your System 4-19
Assemble Components to Create Your System 4-20
Run Your System . 4-21
Reconfigure Your System During Runtime 4-22

Basic Radar Workflow
5

Overview of Basic Workflow . 5-2

End-to-End Radar System . 5-3
Radar Scenario . 5-3
Waveform . 5-3
Antenna . 5-4
Target Model . 5-4
Antenna and Target Platforms . 5-4
Modeling the Transmitter . 5-5
Modeling Waveform Radiation and Collection 5-6
Modeling the Receiver . 5-6
Modeling the Propagation Environment 5-6
Implementing the Basic Radar Model 5-7

1

Getting Started with Phased Array
System Toolbox Software

• “Phased Array System Toolbox Product Description” on page 1-2
• “Limitations” on page 1-3
• “Standards and Conventions” on page 1-4

1 Getting Started with Phased Array System Toolbox Software

1-2

Phased Array System Toolbox Product Description
Design and simulate phased array signal processing systems

Phased Array System Toolbox™ provides algorithms and apps for the design, simulation,
and analysis of sensor array systems in radar, sonar, wireless communications, and
medical imaging applications. The system toolbox includes pulsed and continuous
waveforms and signal processing algorithms for beamforming, matched filtering,
direction of arrival (DOA) estimation, and target detection. It also includes models for
transmitters and receivers, propagation, targets, jammers, and clutter.

The system toolbox lets you model the dynamics of ground-based, airborne, or ship-borne
multifunction radar systems with moving targets and platforms. You can design end-to-
end phased array systems and analyze their performance under different scenarios using
synthetic or acquired data. The toolbox apps let you explore the characteristics of sensor
arrays and waveforms and perform link budget analysis. In-product examples provide a
starting point for implementing custom phased array systems.

Toolbox algorithms are available as MATLAB® System objects and Simulink® blocks.

Key Features

• Multifunction radar system modeling, including actively electronically scanned array
(AESA) and passively electronically scanned array (PESA)

• Radar theater models with moving targets, propagation channels, and interferences
such as clutter and jammer

• URA, ULA, UCA, and conformal sensor arrays with perturbation and polarization
effects

• Continuous and pulsed waveforms, including frequency modulated and phased coded
pulses

• Digital beamforming algorithms for broadband and narrowband waveforms, including
Capon and Frost

• Direction of arrival (DOA) algorithms, including monopulse, beamscan, MVDR, Root
MUSIC, and ESPRIT

• Range and Doppler estimation and detection algorithms, including CFAR processing
• Space-time adaptive processing (STAP) algorithms, including sample matrix inversion

(SMI) and adaptive DPCA pulse canceller

 Limitations

1-3

Limitations

In this section...

“MATLAB Compiler Support” on page 1-3
“Code Generation Support” on page 1-3

MATLAB Compiler Support

Phased Array System Toolbox supports the MATLAB Compiler™ for all functions and
System objects. Compiler support does not extend to any of the toolbox apps.

Code Generation Support

While the Phased Array System Toolbox software supports automatic generation of C
code using MATLAB Coder™, there are several limitations. See “Code Generation” for
more information about limitations on the use of MATLAB Coder with the Phased Array
System Toolbox.

1 Getting Started with Phased Array System Toolbox Software

1-4

Standards and Conventions

In this section...

“Scope of Standards and Conventions” on page 1-4
“Complex-Valued Baseband Signals” on page 1-4
“Data Organization of Baseband Signals” on page 1-5
“Spatial Coordinates” on page 1-5
“Physical Quantities” on page 1-5
“Supported Data Types” on page 1-5

Scope of Standards and Conventions

Phased Array System Toolbox software uses consistent conventions with respect to units
of measure, data representations, and coordinate systems. You must understand these
conventions to use the toolbox.

Complex-Valued Baseband Signals

In phased array signal processing, it is common to shift the frequency content of a
waveform to support effective radiation and propagation in the medium. You accomplish
this task by modulating a baseband signal with nonzero spectral magnitudes in the
vicinity of zero frequency to create a bandpass signal with nonzero spectral magnitudes
centered around a carrier frequency. Typically, the bandwidth of the baseband signal is
small compared to the carrier frequency resulting in a narrowband signal. To process
returned signals, the receiver demodulates the bandpass signal to the baseband. The
demodulation involves local oscillators both in phase and 90 degrees out of phase
with the modulating carrier frequency. This demodulation results in in-phase (I) and
quadrature (Q) baseband signals, or channels. For processing, it is convenient to create a
complex-valued baseband signal by assigning the I channel to be the real part and the Q
channel to be the imaginary part, I+jQ.

This software uses the complex-valued baseband representation to represent both
transmitted and received signals. Actual phased array systems transmit real-valued
signals and create complex-valued baseband signals only at the receiver. However, you
can use a complex-valued representation at all stages. Doing so enables you to accurately
model the effect of system gains, losses, and interference on the received signal samples.

 Standards and Conventions

1-5

Data Organization of Baseband Signals

You can use this software to efficiently implement space-time processing of complex-
valued baseband samples by organizing the data in a three-dimensional matrix. See
“Radar Data Cube” on page 3-2 for an explanation of how the software organizes
space-time data.

Spatial Coordinates

Representation of position in three dimensions is a fundamental aspect of array signal
processing. This software specifies rectangular and spherical coordinates as column
vectors with respect to both global and local origins. For a detailed explanation of the
conventions, see:

• “Rectangular Coordinates”
• “Spherical Coordinates”
• “Global and Local Coordinate Systems”

Physical Quantities

This software uses the International System of Units (SI) almost exclusively for
measurement. In addition, there are physical constants declared and used in
calculations. See “Units of Measure and Physical Constants” on page 3-7 for a
detailed explanation of the conventions.

Supported Data Types

This software supports only double-precision data types.

2

Phased Array Systems

2 Phased Array Systems

2-2

System Overviews

In this section...

“Phased Array System Overview” on page 2-2
“Phased Array Radar Overview” on page 2-4

Phased Array System Overview

Phased array systems use the spatial and temporal characteristics of propagating
space-time wavefields to extract information about any sources of the wavefields. By
processing data collected over a spatiotemporal aperture using an array of sensors, you
can significantly improve performance over a single sensor in a number of areas. These
areas include, but are not limited to:

• Signal detectability
• Spatial selectivity
• Source identification and localization

The following figure shows a high-level overview of a phased array system.

Source

Array

Receiver

Array

Target

Environment

Environment

Waveform

Result

Phased array systems in diverse applications, such as radar, sonar, medical
ultrasonography, medical imaging, and cellular phone communication share many
common elements including:

• Source Array — The source array transmits a waveform through an environment.
The waveform often consists of repeating pulses modulated by a carrier frequency.
Depending on the application, the wave may be an acoustic (mechanical), or

 System Overviews

2-3

electromagnetic wave. The source array is often electronically or mechanically steered
to transmit in preferred directions.

• Environment — The medium in which the waveform travels to and from the target
affects a number of system parameters including propagation speed, absorption loss,
and wave dispersion.

• Target — The target reflects a portion of the incident waveform energy from the
source array. Some percentage of the reflected energy is backscattered in the direction
of the receiver array. In some applications, the target is the source of the waveform
energy.

• Receiver Array — The receiver array collects energy from the target representing
the signal along with external and internal sources of noise. The receiver implements
algorithms to improve the signal-to-noise ratio and extract space-time information
from the signal.

At the receiver, phased array systems implement algorithms to extract temporal and
spatial information about the source, or sources of energy. The following figure shows
a high-level overview of array signal processing algorithms common to a significant
number of phased array systems.

Receiver
Array

Temporal

Processing

Spatial

Processing

Space-Time

Processing

Brief descriptions of the three categories are:

• Temporal Processing — Phased arrays often operate in poor signal-to-noise (SNR)
ratios. Employing temporal integration and matched filtering improves the SNR.
Knowing the propagation speed of the transmitted waveform and measuring the
time it takes for a pulse to travel to and from a target allows phased array systems
to estimate range. Performing Fourier analysis on a time series of pulses enables the
phased array to extract Doppler information from moving targets.

• Spatial Processing — Combining weighted information across multiple sensor
elements with a known geometry enables phased array systems to spatially filter

2 Phased Array Systems

2-4

incoming waveforms. Phased arrays can also estimate the direction of arrival and the
number of source waveforms incident on the array.

• Space-Time Processing — Simultaneously analyzing both spatial and temporal
information enables phased array systems to produce joint angle-Doppler
measurements of incident waveforms. Space-time processing enables phased array
systems to distinguish moving targets from stationary targets when the phased array
is in motion.

Phased Array Radar Overview

The following figure presents an overview of a radar phased array system. The figure
expands on the high-level overview shown in “Phased Array System Overview” on page
2-2.

transmit radiate

propagate

transmitter

collect

propagate
waveform

radiator

using

phased array

environment

target

environment

environment

receiver
radar

data cube

collector

using

phased array

jammer

re!ect

propagate

receive

clutter

To exploit the advantages of array processing, you must first understand how to model
and optimize the performance of each component and operation in a phased array
system. This software provides models for all the components of the phased array system
illustrated in the preceding figure from signal synthesis to signal analysis.

The software supports models in which the transmitter and receiver are collocated or
spatially separated. The software also supports models in which both the targets and
phased array are in motion.

 System Overviews

2-5

Waveform Synthesis

Phased Array System Toolbox software supports the design of rectangular, linear
frequency-modulated, and linear stepped-frequency pulsed waveforms. To create such
waveforms, you use phased.RectangularWaveform, phased.LinearFMWaveform,
and phased.SteppedFMWaveform.

Physical Components and Environment Modeling

The software enables you to simulate the physical components of a phased array system,
including:

• Transmitter — You can specify the transmitter peak power, gain, and loss factor.
See phased.Transmitter for details.

• Antenna elements — You can create antenna elements with isotropic response
patterns or antenna elements with user-specified response patterns. These response
patterns can encompass the entire range of azimuth ([-180,180] degrees) and
elevation ([-90,90] degrees) angles. See phased.IsotropicAntennaElement,
phased.CosineAntennaElement, and phased.CustomAntennaElement for
details.

• Microphone elements — For acoustic applications, you
can model an omnidirectional or custom microphone with
phased.OmnidirectionalMicrophoneElement or
phased.CustomMicrophoneElement.

Phased arrays — There are System objects for three phased array geometries:

• Uniform linear array (ULA) — phased.ULA enables you to model a uniform linear
array consisting of sensor elements with isotropic or custom radiation patterns.
You can specify the number of elements and element spacing.

• Uniform rectangular array — phased.URA enables you to model a uniform
rectangular array of sensor elements with isotropic or custom radiation patterns.
You can specify the number of elements, element spacing along two orthogonal
axes, and lattice geometry.

• Conformal array — phased.ConformalArray enables you to model a conformal
array of sensor elements with isotropic or custom radiation patterns. To do so,
specify the antenna element positions and normal directions.

• Radiator — You can model waveform radiation through an antenna element,
microphone, or array with the phased.Radiator object.

2 Phased Array Systems

2-6

• Environment — You can model the propagation of an electromagnetic (EM) wave
in free space with phased.FreeSpace. You can simulate one-way or two-way
propagation of a narrowband EM signal by applying range-dependent attenuation and
time delays, or phase shifts.

• Target — You can simulate a target with a specified radar cross section (RCS) using
phased.RadarTarget. phased.RadarTarget supports both nonfluctuating and
fluctuating (random) models of the RCS. The toolbox supports a family of random
models based on the chi-square distribution known as Swerling target models.

• Interference — You can simulate wideband interference with a user-specified
radiated power, using phased.BarrageJammer.

• Clutter — You can simulate surface clutter using
phased.ConstantGammaClutter.

• Signal collection — You can simulate far-field or near-field narrowband and
wideband signal reception from specified directions using phased.Collector and
phased.WidebandCollector.

• Receiver — phased.ReceiverPreamp enables you to simulate the gain, loss factor,
and internal noise characteristics of your receiver.

Array Signal Processing

For the processing of received data, Phased Array System Toolbox software supports a
wide-range of array signal processing algorithms. The following figure presents a more
detailed view of the general concepts discussed in “Phased Array System Overview” on
page 2-2.

 System Overviews

2-7

Receiver

DOA

Beamforming

Matched
Filtering

Time-varying
Gain

STAP

Coherent
Integration

Noncoherent
Integration

NP
Detector

Range
Detection

Pulse
Doppler

The preceding figure only presents an overview of the array signal processing operations
supported by the software rather than predetermined orders of operation. For example,
direction of arrival (DOA) estimation, beamforming, and space-time adaptive processing
(STAP) often follow operations that improve the signal-to-noise ratio such as matched
filtering. You can implement the supported algorithms in the manner best-suited to your
application.

• Matched Filtering — You can perform matched filtering on your data with
phased.MatchedFilter. See “Matched Filtering” for examples.

2 Phased Array Systems

2-8

• Time-varying gain — You can equalize the power level of the incident waveform
across samples from different ranges using phased.TimeVaryingGain. This object
compensates for signal power loss due to range.

• Beamforming and direction-of-arrival (DOA) estimation — The Phased Array
System Toolbox provides a number of algorithms for beamforming and direction of
arrival estimation.

• Detection — A number of utility functions implement and evaluate Neyman-Pearson
detectors using both coherent and noncoherent pulse integration.

The toolbox also provides routines for evaluating detector performance through the
construction of receiver operating characteristic curves.

To model fluctuating noise characteristics, phased.CFARDetector object adaptively
estimates the noise characteristics from the data to maintain a constant false-alarm
rate.

• Pulse Doppler — The Phased Array System Toolbox has utility functions for
estimating Doppler shift based on speed (speed2dop) and to estimate speed based on
the Doppler shift (dop2speed. You can implement pulse-Doppler processing by using
the spectrum estimation algorithms in the Signal Processing Toolbox™ product on
the slow-time data. See “Radar Data Cube” on page 3-2 for an explanation of the
slow-time data.

See “Doppler Shift and Pulse-Doppler Processing” for examples of Doppler processing.

To calculate the joint angle-Doppler response of the input data, use
phased.AngleDopplerResponse.

Example workflows for computing the angle-Doppler response can be found in “Angle-
Doppler Response”.

• Space-time adaptive processing — You can implement displaced phase center
antenna techniques with phased.DPCACanceller and phased.ADPCACanceller.
phased.STAPSMIBeamformer implements an adaptive beamformer by calculating
the beamformer weights using the estimated space-time interference covariance
matrix.

3

Radar Data Cube, Units, and Physical
Constants

• “Radar Data Cube” on page 3-2
• “Units of Measure and Physical Constants” on page 3-7

3 Radar Data Cube, Units, and Physical Constants

3-2

Radar Data Cube

In this section...

“Radar Data Cube Concept” on page 3-2
“Fast Time Samples” on page 3-3
“Slow Time Samples” on page 3-4
“Spatial Sampling” on page 3-4
“Space-Time Processing” on page 3-4
“Organizing Data in the Radar Data Cube” on page 3-5

Radar Data Cube Concept

The radar data cube is a convenient way to conceptually represent space-time
processing. To construct the radar data cube, assume that preprocessing converts the
RF signals received from multiple pulses across multiple array elements to complex-
valued baseband samples. Arrange the complex-valued baseband samples in a three-
dimensional array of size M-by-N-by-L. Many radar signal processing operations in
Phased Array System Toolbox software correspond to processing lower-dimensional
subsets of the radar data cube. The subset could be a one-dimensional subvector or a two-
dimensional submatrix.

The following figure shows the organization of the radar data cube in this software.
Subsequent sections explain each of the dimensions and which aspect of space-time
processing they represent.

 Radar Data Cube

3-3

Fa
st

 T
im

e

Spatial Sampling

Slo
w

 T
im

e

Fast Time Samples

Consider an M-by-1 subvector of the radar data cube along the Fast Time axis in the
above diagram. Each column vector represents a set of complex-valued baseband samples
from a single pulse at one array element sampled at the rate F

s . This is the highest
sampling rate of the system and leads to the designation fast time. F

s should be chosen
to avoid aliasing. The corresponding sampling interval is given by T F

s s
= 1 / . The fast

time dimension is also referred to as the range dimension and the fast time sample
intervals, when converted to distance using the signal propagation speed, are often
referred to as range bins, or range gates.

Pulse compression is an example of a signal processing operation performed on the fast
time samples.

3 Radar Data Cube, Units, and Physical Constants

3-4

Slow Time Samples

Consider each M-by-L submatrix of the radar data cube. In the submatrix there are M
row vectors with dimension 1-by-L. Each of these row vectors contains complex-valued
baseband samples from L different pulses corresponding to the same range bin. There is
a M-by-L matrix for each of the N array elements. The sampling interval between the L
samples is the pulse repetition interval (PRI). Typical PRIs are much longer than the fast-
time sampling interval. Because of the long sampling intervals, samples taken across
multiple pulses are referred to as slow time.

Processing data in the slow time dimension allows you to estimate the Doppler spectrum
at a given range bin.

The Nyquist criterion applies equally to the slow-time dimension. The reciprocal of the
PRI is the pulse repetition frequency (PRF). The PRF gives the width of the unambiguous
Doppler spectrum.

Spatial Sampling

Phased arrays consist of multiple array elements. Consider each M-by-N submatrix of
the radar data cube. Each column vector consists of M fast-time samples for a single
pulse received at a single array element. The N column vectors represent the same pulse
sampled across N array elements. The sampled data in the N column vectors is a spatial
sampling of the incident waveform. Analysis of the data across the array elements allows
you to examine the spatial frequency content of each received pulse.

It is also possible to spatially sample a wavefield by mechanically steering a single
antenna, but the more common scenario is to sample the wavefield by multiple array
elements. The Nyquist criterion for spatial sampling dictates that array elements must
not be separated by more than one-half the wavelength of the carrier frequency.

Beamforming is a spatial filtering operation that combines data across the array
elements to selectively enhance and suppress wavefields incident on the array from
particular directions.

Space-Time Processing

Space-time adaptive processing operates on the two-dimensional angle-Doppler data for
each range bin. Consider the M-by-N-by-L radar data cube. Each of the M samples is
data from the same range. This range is sampled across N array elements, and L PRIs.

 Radar Data Cube

3-5

Collapsing the three-dimensional matrix at each range bin into N-by-L submatrices
allows the simultaneous two-dimensional analysis of angle of arrival and Doppler
frequency.

Organizing Data in the Radar Data Cube

If you have M complex-valued baseband data samples collected from L pulses received
at N sensors, you can organize your data in a format compatible with the Phased Array
System Toolbox conventions using permute. After processing your data, you can convert
back to your original data cube format with ipermute.

Reordering the Data Cube

Assume you have a data set consisting of 200 samples per pulse for ten pulses collected
at 6 sensor elements. Assume that your data are organized as a 6-by-10-by-200 matrix.
Simulate this data structure using complex-valued white Gaussian noise samples.

OrigData = randn(6,10,200)+1j*randn(6,10,200);

The first dimension of OrigData is the number of sensors (spatial sampling), the second
dimension is the number of pulses (slow-time), and the third dimension contains the fast-
time samples. This format is not compatible with the radar data cube conventions of the
Phased Array System Toolbox.

The Phased Array System Toolbox expects the first dimension to contain the fast-time
samples, the second dimension to represent individual sensors in the array, and the third
dimension to contain the slow-time samples.

To reorganize OrigData in a format compatible with the toolbox conventions, enter:

NewData = permute(OrigData,[3 1 2]);

The preceding line of code moves the third dimension of OrigData to be the first
dimension of NewData. The first dimension of OrigData becomes the second dimension
of NewData and the second dimension of OrigData becomes the third dimension of
NewData. This results in NewData being organized as fast-time samples-by-sensors-
by-slow-time samples. You can now process NewData with the Phased Array System
Toolbox software.

After you process your data, you can use ipermute to return your data format to the
original structure.

3 Radar Data Cube, Units, and Physical Constants

3-6

Data = ipermute(NewData,[3 1 2]);

% Data is equal to OrigData

 Units of Measure and Physical Constants

3-7

Units of Measure and Physical Constants

In this section...

“Units of Measure” on page 3-7
“Physical Constants” on page 3-7

Units of Measure

Phased Array System Toolbox software almost exclusively uses SI base and derived units
to measure physical quantities. The software does not provide any utilities for converting
SI base or derived units to other systems of measurement.

Angles

Angles are an exception to the use of SI base and derived units. All angles in Phased
Array System Toolbox software are specified in degrees. See “Spherical Coordinates”
for an explanation of the angles used in the software. There are two utility functions
for converting angles from radians to degrees and degrees to radians: radtodeg and
degtorad.

Decibels

To accurately model and simulate phased array systems, it is necessary to account for
gains and losses in power incurred at various stages of processing. In Phased Array
System Toolbox software, these gains and losses are specified in decibels (dB). Signal to
noise ratios (SNRs) and the receiver noise figure are also expressed in dB. A power of P
watts in dB is:

10 10log ()P

There are two utility functions for converting between dB and power: db2pow and
pow2db, and two utility functions for converting between magnitude and dB: db2mag and
mag2db.

Physical Constants

Modeling and simulating phased array systems requires that you specify values for a
number of physical constants. For example, the distribution of thermal noise power

3 Radar Data Cube, Units, and Physical Constants

3-8

per unit bandwidth depends on the Boltzmann constant. To measure Doppler shift and
range in radar, you have to specify a value for the speed of light. The following table
summarizes the three physical constants specified in the toolbox. See physconst for
additional information.

Description Value

Speed of light in a vacuum 299,792,458 m/s. Most commonly denoted
by c.

Boltzmann constant relating energy to
temperature. 1 38 10

23
. x

− J/K. Most commonly denoted
by k.

Mean radius of the Earth 6,371,000 m

4

System Objects

• “What Is a System Toolbox?” on page 4-2
• “What Are System Objects?” on page 4-3
• “System Objects vs. MATLAB Functions” on page 4-5
• “System Design and Simulation in MATLAB” on page 4-8
• “System Objects in MATLAB Code Generation” on page 4-9
• “System Objects in Simulink” on page 4-13
• “System Object Methods” on page 4-14
• “System Design in MATLAB Using System Objects” on page 4-18

4 System Objects

4-2

What Is a System Toolbox?

System Toolbox products provide algorithms and tools for designing, simulating,
and deploying dynamic systems in MATLAB and Simulink. These toolboxes contain
MATLAB functions, System objects, and Simulink blocks that deliver the same design
and verification capabilities across MATLAB and Simulink, enabling more effective
collaboration among system designers. Available System Toolbox products include:

• DSP System Toolbox
• Communications System Toolbox
• Computer Vision System Toolbox
• Phased Array System Toolbox

System Toolboxes support floating-point and fixed-point streaming data simulation
for both sample- and frame-based data. They provide a programming environment for
defining and executing code for various aspects of a system, such as initialization and
reset. System Toolboxes also support code generation for a range of system development
tasks and workflows, such as:

• Rapid development of reusable IP and test benches
• Sharing of component libraries and systems models across teams
• Large system simulation
• C-code generation for embedded processors
• Finite wordlength effects modeling and optimization
• Ability to prototype and test on real-time hardware

 What Are System Objects?

4-3

What Are System Objects?

A System object™ is a specialized kind of MATLAB object. System Toolboxes include
System objects and most System Toolboxes also have MATLAB functions and Simulink
blocks. System objects are designed specifically for implementing and simulating
dynamic systems with inputs that change over time. Many signal processing,
communications, and controls systems are dynamic. In a dynamic system, the values
of the output signals depend on both the instantaneous values of the input signals and
on the past behavior of the system. System objects use internal states to store that past
behavior, which is used in the next computational step. As a result, System objects are
optimized for iterative computations that process large streams of data, such as video
and audio processing systems.

For example, you could use System objects in a system that reads data from a file,
filters that data and then writes the filtered output to another file. Typically, a specified
amount of data is passed to the filter in each loop iteration. The file reader object uses
a state to keep track of where in the file to begin the next data read. Likewise, the file
writer object keeps tracks of where it last wrote data to the output file so that data is not
overwritten. The filter object maintains its own internal states to assure that the filtering
is performed correctly. This diagram represents a single loop of the system.

Many System objects support:

• Fixed-point arithmetic (requires a Fixed-Point Designer™ license)
• C code generation (requires a MATLAB Coder or Simulink Coder license)
• HDL code generation (requires an HDL Coder™ license)
• Executable files or shared libraries generation (requires a MATLAB Compiler license)

Note: Check your product documentation to confirm fixed-point, code generation, and
MATLAB Compiler support for the specific System objects you want to use.

4 System Objects

4-4

In addition to the System objects provided with System Toolboxes, you can also create
your own System objects. See “Define Basic System Objects”.

 System Objects vs. MATLAB Functions

4-5

System Objects vs. MATLAB Functions

In this section...

“System Objects vs. MATLAB Functions” on page 4-5
“Process Audio Data Using Only MATLAB Functions Code” on page 4-5
“Process Audio Data Using System Objects” on page 4-6

System Objects vs. MATLAB Functions

Many System objects have MATLAB function counterparts. For simple, one-time
computations use MATLAB functions. However, if you need to design and simulate
a system with many components, use System objects. Using System objects is also
appropriate if your computations require managing internal states, have inputs that
change over time or process large streams of data.

Building a dynamic system with different execution phases and internal states using
only MATLAB functions would require complex programming. You would need code to
initialize the system, validate data, manage internal states, and reset and terminate
the system. System objects perform many of these managerial operations automatically
during execution. By combining System objects in a program with other MATLAB
functions, you can streamline your code and improve efficiency.

Process Audio Data Using Only MATLAB Functions Code

This example shows how to write MATLAB function-only code for reading audio data.

The code reads audio data from a file, filters it, and then plays the filtered audio data.
The audio data is read in frames. This code produces the same result as the System
objects code in the next example, allowing you to compare approaches.

Locate source audio file.

fname = 'speech_dft_8kHz.wav';

Obtain the total number of samples and the sampling rate from the source file.

audioInfo = audioinfo(fname);

maxSamples = audioInfo.TotalSamples;

fs = audioInfo.SampleRate;

4 System Objects

4-6

Define the filter to use.

b = fir1(160,.15);

Initialize the filter states.

z = zeros(1,numel(b)-1);

Define the amount of audio data to process at one time, and initialize the while loop
index.

frameSize = 1024;

nIdx = 1;

Define the while loop to process the audio data.

while nIdx <= maxSamples(1)-frameSize+1

 audio = audioread(fname,[nIdx nIdx+frameSize-1]);

 [y,z] = filter(b,1,audio,z);

 sound(y,fs);

 nIdx = nIdx+frameSize;

end

The loop uses explicit indexing and state management, which can be a tedious and error-
prone approach. You must have detailed knowledge of the states, such as, sizes and
data types. Another issue with this MATLAB-only code is that the sound function is not
designed to run in real time. The resulting audio is very choppy and barely audible.

Process Audio Data Using System Objects

This example shows how to write System objects code for reading audio data.

The code uses System objects from the DSP System Toolbox™ software to read audio
data from a file, filter it, and then play the filtered audio data. This code produces the
same result as the MATLAB code shown previously, allowing you to compare approaches.

Locate source audio file.

fname = 'speech_dft_8kHz.wav';

Define the System object to read the file.

audioIn = dsp.AudioFileReader(fname,'OutputDataType','single');

 System Objects vs. MATLAB Functions

4-7

Define the System object to filter the data.

filtLP = dsp.FIRFilter('Numerator',fir1(160,.15));

Define the System object to play the filtered audio data.

audioOut = dsp.AudioPlayer('SampleRate',audioIn.SampleRate);

Define the while loop to process the audio data.

while ~isDone(audioIn)

 audio = step(audioIn); % Read audio source file

 y = step(filtLP,audio); % Filter the data

 step(audioOut,y); % Play the filtered data

end

This System objects code avoids the issues present in the MATLAB-only code. Without
requiring explicit indexing, the file reader object manages the data frame sizes while
the filter manages the states. The audio player object plays each audio frame as it is
processed.

4 System Objects

4-8

System Design and Simulation in MATLAB

System objects allow you to design and simulate your system in MATLAB. You use
System objects in MATLAB as shown in this diagram.

1 Create individual components — Create the System objects to use in your system.
See “Create Components for Your System” on page 4-18 for information. In
addition to the System objects provided with System Toolboxes, you can also create
your own System objects. See “Define New System Objects”.

2 Configure components — If necessary, change the objects’ property values to model
your particular system. All System object properties have default values that you
may be able to use without changing them. See “Configure Components for Your
System” on page 4-19 for information.

3 Assemble components into system — Write a MATLAB program that includes those
System objects, connecting them using MATLAB variables as inputs and outputs to
simulate your system. See “Assemble Components to Create Your System” on page
4-20 for information.

4 Run the system — Run your program, which uses the step method to run your
system’s System objects. You can change tunable properties while your system is
running. See “Run Your System” on page 4-21 and “Reconfigure Your System
During Runtime” on page 4-22 for information.

 System Objects in MATLAB Code Generation

4-9

System Objects in MATLAB Code Generation

In this section...

“System Objects in Generated Code” on page 4-9
“System Objects in codegen” on page 4-11
“System Objects in the MATLAB Function Block” on page 4-12
“System Objects and MATLAB Compiler Software” on page 4-12

System Objects in Generated Code

You can generate C/C++ code in MATLAB from your system that contains System objects
by using the MATLAB Coder product. Using this product, you can generate efficient
and compact code for deployment in desktop and embedded systems and accelerate
fixed-point algorithms. You do not need the MATLAB Coder product to generate code in
Simulink.

Note: Most, but not all, System objects support code generation. Refer to the particular
object’s reference page for information.

System Objects Code with Persistent Objects for Code Generation

For another detailed code generation example, see “Generate Code for MATLAB Handle
Classes and System Objects” in the MATLAB Coder product documentation.

Usage Rules and Limitations for System Objects in Generated MATLAB Code

The following usage rules and limitations apply to using System objects in code
generated from MATLAB.

Object Construction and Initialization

• If objects are stored in persistent variables, initialize System objects once by
embedding the object handles in an if statement with a call to isempty().

• Set arguments to System object constructors as compile-time constants.
• You cannot initialize System objects properties with other MATLAB class objects

as default values in code generation. You must initialize these properties in the
constructor.

4 System Objects

4-10

Inputs and Outputs

• System objects accept a maximum of 32 inputs. A maximum of 8 dimensions per input
is supported.

• The data type of the inputs should not change.
• If you want the size of inputs to change, verify that variable-size is enabled. Code

generation support for variable-size data also requires that the Enable variable
sizing option is enabled, which is the default in MATLAB.

Note: Variable-size properties in MATLAB Function block in Simulink are not
supported. System objects predefined in the software do not support variable-size if
their data exceeds the DynamicMemoryAllocationThreshold value.

• Do not set System objects to become outputs from the MATLAB Function block.
• Do not use the Save and Restore Simulation State as SimState option for any System

object in a MATLAB Function block.
• Do not pass a System object as an example input argument to a function being

compiled with codegen.
• Do not pass a System object to functions declared as extrinsic (functions called in

interpreted mode) using the coder.extrinsic function. System objects returned
from extrinsic functions and scope System objects that automatically become extrinsic
can be used as inputs to another extrinsic function, but do not generate code.

Tunable and Nontunable Properties

• The value assigned to a nontunable property must be a constant and there can be at
most one assignment to that property (including the assignment in the constructor).

• For most System objects, the only time you can set their nontunable properties during
code generation is when you construct the objects.

• For System objects that are predefined in the software, you can set their tunable
properties at construction time or using dot notation after the object is locked.

• For System objects that you define, you can change their tunable properties
at construction time or using dot notation during code generation. For
getNumInputsImpl and getNumOutputsImpl methods, if you set the
return argument from an object property, that object property must have the
Nontunable attribute.

• Objects cannot be used as default values for properties.

 System Objects in MATLAB Code Generation

4-11

• In MATLAB simulations, default values are shared across all instances of an object.
Two instances of a class can access the same default value if that property has not
been overwritten by either instance.

Cell Arrays and Global Variables

• Do not use cell arrays.
• Global variables are not supported. To avoid syncing global variables between a MEX

file and the workspace, use a coder configuration object. For example:

f = coder.MEXConfig;

f.GlobalSyncMethod = 'NoSync'

Then, include '-config f' in your codegen command.

Methods

• Code generation support is available only for these System object methods:

• get

• getNumInputs

• getNumOutputs

• isDone (for sources only)
• release

• reset

• set (for tunable properties)
• step

• Code generation support for using dot notation depends on whether the System object
is predefined in the software or is one that you defined.

• For System objects that are predefined in the software, you cannot use dot
notation to call methods.

• For System objects that you define, you can use dot notation or function call
notation, with the System object as first argument, to call methods.

System Objects in codegen

You can include System objects in MATLAB code in the same way you include any
other elements. You can then compile a MEX file from your MATLAB code by using

4 System Objects

4-12

the codegen command, which is available if you have a MATLAB Coder license. This
compilation process, which involves a number of optimizations, is useful for accelerating
simulations. See “Getting Started with MATLAB Coder” and “MATLAB Classes” for
more information.

Note: Most, but not all, System objects support code generation. Refer to the particular
object’s reference page for information.

System Objects in the MATLAB Function Block

Using the MATLAB Function block, you can include any System object and any MATLAB
language function in a Simulink model. This model can then generate embeddable
code. System objects provide higher-level algorithms for code generation than do most
associated blocks. For more information, see “What Is a MATLAB Function Block?” in the
Simulink documentation.

System Objects and MATLAB Compiler Software

MATLAB Compiler software supports System objects for use inside MATLAB functions.
The compiler product does not support System objects for use in MATLAB scripts.

 System Objects in Simulink

4-13

System Objects in Simulink

System Objects in the MATLAB Function Block

You can include System object code in Simulink models using the MATLAB Function
block. Your function can include one or more System objects. Portions of your system may
be easier to implement in the MATLAB environment than directly in Simulink. Many
System objects have Simulink block counterparts with equivalent functionality. Before
writing MATLAB code to include in a Simulink model, check for existing blocks that
perform the desired operation.

4 System Objects

4-14

System Object Methods

In this section...

“What Are System Object Methods?” on page 4-14
“The Step Method” on page 4-14
“Common Methods” on page 4-16

What Are System Object Methods?

After you create a System object, you use various object methods to process data or
obtain information from or about the object. All methods that are applicable to an object
are described in the reference pages for that object. System object method names begin
with a lowercase letter and class and property names begin with an uppercase letter.
The syntax for using methods is <method>(<handle>), such as step(H), plus possible
extra input arguments.

System objects use a minimum of two commands to process data—a constructor to
create the object and the step method to run data through the object. This separation
of declaration from execution lets you create multiple, persistent, reusable objects,
each with different settings. Using this approach avoids repeated input validation
and verification, allows for easy use within a programming loop, and improves overall
performance. In contrast, MATLAB functions must validate parameters every time you
call the function.

These advantages make System objects particularly well suited for processing streaming
data, where segments of a continuous data stream are processed iteratively. This ability
to process streaming data provides the advantage of not having to hold large amounts of
data in memory. Use of streaming data also allows you to use simplified programs that
use loops efficiently.

The Step Method

The step method is the key System object method. You use step to process data using
the algorithm defined by that object. The step method performs other important tasks
related to data processing, such as initialization and handling object states. Every
System object has its own customized step method, which is described in detail on the

 System Object Methods

4-15

step reference page for that object. For more information about the step method and
other available methods, see the descriptions in “Common Methods” on page 4-16.

Calculate the Effect of Propagating a Signal in Free Space

This example uses two different step methods. The first step method is associated with
the phased.LinearFMWaveform object and the second step method is associated with
the phased.Freespace object.

Construct a linear FM waveform with a pulse duration of 50 microseconds, a sweep
bandwidth of 100 kHz, an increasing instantaneous frequency, and a pulse repetition
frequency (PRF) of 10 kHz..

hFM = phased.LinearFMWaveform('SampleRate',1e6,...

 'PulseWidth',5e-5,'PRF',1e4,...

 'SweepBandwidth',1e5,'SweepDirection','Up',...

 'OutputFormat','Pulses','NumPulses',1);

Obtain the waveform using the step method. Note that the input to the step method is
a handle to a phased.LinearFMWaveform object.

Sig = step(hFM);

Construct a free space object with a propagation speed equal to the speed of light, an
operating frequency of 3 GHz, and a sample rate of 1 MHz. The free space object is
constructed to model one way propagation.

 hFS = phased.FreeSpace(...

 'PropagationSpeed',physconst('LightSpeed'),...

 'OperatingFrequency',3e9,'TwoWayPropagation',false,...

 'SampleRate',1e6);

Calculate the effect on the waveform of one-way propagation in free space from
coordinates [0;0;0] to [500; 1e3; 20] and plot the results for comparison.

 PropSig = step(hFS,Sig,[0; 0; 0],[500; 1e3; 20],...

 [0;0;0],[0;0;0]);

 % compare the original signal to the propagated waveform

 t = unigrid(0,1/hFS.SampleRate,length(Sig)*1/hFS.SampleRate,'[)');

 subplot(211)

 plot(t,real(Sig)); title('Original Signal (real part)');

 ylabel('Amplitude');

 subplot(212)

4 System Objects

4-16

 plot(t,real(PropSig)); title('Propagated Signal (real part)');

 xlabel('Seconds'); ylabel('Amplitude');

Common Methods

All System objects support the following methods, each of which is described in a method
reference page associated with the particular object. In cases where a method is not
applicable to a particular object, calling that method has no effect on the object.

Method Description

step Processes data using the algorithm defined by the object. As
part of this processing, it initializes needed resources, returns
outputs, and updates the object states. After you call the
step method, you cannot change any input specifications (i.e.,
dimensions, data type, complexity). During execution, you can
change only tunable properties. The step method returns
regular MATLAB variables.

Example: Y = step(H,X)
release Releases any special resources allocated by the object, such

as file handles and device drivers, and unlocks the object.
For System objects, use the release method instead of a
destructor.

 System Object Methods

4-17

Method Description

reset Resets the internal states of a locked object to the initial values
for that object and leaves the object locked

getNumInputs Returns the number of inputs (excluding the object itself)
expected by the step method. This number varies for an object
depending on whether any properties enable additional inputs.

getNumOutputs Returns the number of outputs expected from the step
method. This number varies for an object depending on
whether any properties enable additional outputs.

getDiscreteState Returns the discrete states of the object in a structure. If the
object is unlocked (when the object is first created and before
you have run the step method on it or after you have released
the object), the states are empty. If the object has no discrete
states, getDiscreteState returns an empty structure.

clone Creates another object of the same type with the same property
values

isLocked Returns a logical value indicating whether the object is locked.
isDone Applies to source objects only. Returns a logical value

indicating whether the step method has reached the end of
the data file. If a particular object does not have end-of-data
capability, this method value returns false.

info Returns a structure containing characteristic information
about the object. The fields of this structure vary depending on
the object. If a particular object does not have characteristic
information, the structure is empty.

4 System Objects

4-18

System Design in MATLAB Using System Objects

In this section...

“Create Components for Your System” on page 4-18
“Configure Components for Your System” on page 4-19
“Assemble Components to Create Your System” on page 4-20
“Run Your System” on page 4-21
“Reconfigure Your System During Runtime” on page 4-22

Create Components for Your System

This example shows how to create components for a system that processes a long stream
of audio data. The data is read from a file, filtered, and then played.

A System object is a component you can use to create your system in MATLAB. System
objects support fixed- or variable-size data. Variable-size data is data whose size can
change at run time. By contrast, fixed-size data is data whose size is known and locked at
initialization time, and therefore, cannot change at run time.

Note: If you use a function to create and use a System object, specify the object creation
using conditional code. This will prevent errors if that function is called within a loop.

These examples use System objects that are predefined in the software. You can also
create your own System objects (see “Define New System Objects”).

The particular predefined components you need are:

• dsp.AudioFileReader — Read the file of audio data
• dsp.FIRFilter — Filter the audio data
• dsp.AudioPlayer — Play the filtered audio data

First, you create the component objects, using default property settings:

audioIn = dsp.AudioFileReader;

filtLP = dsp.FIRFilter;

audioOut = dsp.AudioPlayer;

 System Design in MATLAB Using System Objects

4-19

Next, you configure each System object for your system.

Configure Components for Your System

When to Configure Components

If you did not set an object's properties when you created it and do not want to use
default values, you must explicitly set those properties. Some properties allow you to
change their values while your system is running. See “Reconfigure Your System During
Runtime” on page 4-22 for information.

Most properties are independent of each other. However, some System object properties
enable or disable another property or limit the values of another property. To avoid
errors or warnings, you should set the controlling property before setting the dependent
property.

Display Component Property Values

To display the current property values for an object, type that object’s handle name at
the command line (such as audioIn). To display the value of a specific property, type
objecthandle.propertyname (such as audioIn.FileName).

Configure Component Property Values

This example shows how to configure the components for your system by setting the
component objects’ properties.

Use this procedure if you have created your components separately from configuring
them. If you have not yet created your components, use the procedure below that
describes how to create and configure your components at the same time.

For the file reader object, specify the file to read and set the output data type.

audioIn.Filename = 'speech_dft_8kHz.wav';

audioIn.OutputDataType = 'single';

For the filter object, specify the filter numerator coefficients using the fir1 function,
which specifies the lowpass filter order and the cutoff frequency.

filtLP.Numerator = fir1(160,.15);

For the audio player object, specify the sample rate. In this case, use the same sample
rate as the input data.

4 System Objects

4-20

audioOut.SampleRate = audioIn.SampleRate;

Create and Configure Components at the Same Time

This example shows how to create your System object components and configure
the desired properties at the same time. To avoid errors or warnings for dependent
properties, you should set the controlling property before setting the dependent property.
Use this procedure if you have not already created your components.

Create the file reader object, specify the file to read, and set the output data type.

audioIn = dsp.AudioFileReader('speech_dft_8kHz.wav',...

 'OutputDataType','single')

Create the filter object and specify the filter numerator using the fir1 function. Specify
the lowpass filter order and the cutoff frequency of the fir1 function.

filtLP = dsp.FIRFilter('Numerator',fir1(160,.15));

Create the audio player object and specify the sample rate. In this case, use the same
sample rate as the input data.

audioOut = dsp.AudioPlayer('SampleRate',audioIn.SampleRate);

After you create the components, you can assemble them in your system.

Assemble Components to Create Your System

• “Connect Inputs and Outputs” on page 4-20
• “Code for the Whole System” on page 4-21

Connect Inputs and Outputs

After you have determined the components you need and have created and configured
your System objects, assemble your system. You use the System objects like other
MATLAB variables and include them in MATLAB code. You can pass MATLAB variables
into and out of System objects.

The main difference between using System objects and using functions is the step
method. The step method is the processing command for each System object and is
customized for that specific System object. This method initializes your objects and

 System Design in MATLAB Using System Objects

4-21

controls data flow and state management of your system. You typically use step within a
loop.

You use the output from an object’s step method as the input to another object’s step
method. For some System objects, you can use properties of those objects to change the
number of inputs or outputs. To verify that the appropriate number of input and outputs
are being used, you can use getNumInputs and getNumOutputs on any System object.
For information on all available System object methods, see “System Object Methods” on
page 4-14.

Code for the Whole System

This example shows how to write the full code for reading, filtering, and playing a file of
audio data.

You can type this code on the command line or put it into a program file.

audioIn = dsp.AudioFileReader('speech_dft_8kHz.wav',...

 'OutputDataType','single');

filtLP = dsp.FIRFilter('Numerator',fir1(160,.15));

audioOut = dsp.AudioPlayer('SampleRate',audioIn.SampleRate);

while ~isDone(audioIn)

 audio = step(audioIn); % Read audio source file

 y = step(filtLP,audio); % Filter the data

 step(audioOut,y); % Play the filtered data

end

The while loop uses the isDone method to read through the entire file. The step method
is used on each object inside the loop.

Now, you are ready to run your system.

Run Your System

• “How to Run Your System” on page 4-21
• “What You Cannot Change While Your System Is Running” on page 4-22

How to Run Your System

Run your code either by typing directly at the command line or running a file containing
your program. When you run the code for your system, the step method instructs each
object to process data through that object.

4 System Objects

4-22

What You Cannot Change While Your System Is Running

The first call to the step method initializes and then locks your object. When a System
object has started processing data, it is locked to prevent changes that would disrupt its
processing. Use the isLocked method to verify whether an object is locked. When the
object is locked, you cannot change:

• Number of inputs or outputs
• Data type of inputs or outputs
• Data type of any tunable property
• Dimensions of inputs or tunable properties, except for System objects that support

variable-size data
• Value of any nontunable property

To make changes to your system while it is running, see “Reconfigure Your System
During Runtime” on page 4-22.

Reconfigure Your System During Runtime

• “When Can You Change Component Properties?” on page 4-22
• “Change a Tunable Property in Your System” on page 4-22
• “Change Input Complexity or Dimensions” on page 4-23

When Can You Change Component Properties?

When a System object has started processing data, it is locked to prevent changes that
would disrupt its processing. You can use isLocked on any System object to verify
whether it is locked or not. When processing is complete, you can use the release
method to unlock a System object.

Some object properties are tunable, which enables you to change them even if the object
is locked. Unless otherwise specified, System objects properties are nontunable. Refer
to the object’s reference page to determine whether an individual property is tunable.
Typically, tunable properties are not critical to how the System object processes data.

Change a Tunable Property in Your System

This example shows how to change a tunable property.

 System Design in MATLAB Using System Objects

4-23

You can change the filter type to a high-pass filter as your code is running by replacing
the while loop with the following while loop. The change takes effect the next time the
step method is called (such as at the next iteration of the while loop).

reset(audioIn); % Reset audio file

filtLP.Numerator = fir1(160,0.15,'high');

while ~isDone(audioIn)

 audio = step(audioIn); % Read audio source file

 y = step(filtLP,audio); % Filter the data

 step(audioOut,y); % Play the filtered data

end

Change Input Complexity or Dimensions

During simulation, some System objects do not allow complex data if the object was
initialized with real data. You cannot change any input complexity during code
generation.

You can change the value of a tunable property without a warning or error being
produced. For all other changes at run time, an error occurs.

5

Basic Radar Workflow

• “Overview of Basic Workflow” on page 5-2
• “End-to-End Radar System” on page 5-3

5 Basic Radar Workflow

5-2

Overview of Basic Workflow

The scenario and code examples contained in “End-to-End Radar System” on page
5-3 are intended as an introduction to the fundamental workflow used in Phased
Array System Toolbox software. The example is intentionally simplified in order to
familiarize you with the basic theme that extends throughout the toolbox. You will find
the core elements of this workflow in many other examples.

The basic workflow consists of:

• Constructing objects that represent the physical components and algorithms of your
model. The objects have modifiable properties that enable you to parameterize your
model. For information about the object properties, see the object reference page.

• Using the object's step method to perform the action of your parameterized
object on inputs. The action of step is specific to each algorithm. For example,
the step method for the linear FM waveform, phased.LinearFMWaveform,
performs a different action than the step method for the steering vector,
phased.SteeringVector. The specific action and syntax of each step method are
documented on the reference page. You can access the documentation for an object’s
step method by entering:

doc phased.ObjectName/step

at the MATLAB command prompt, or via the hyperlink in the Methods section of the
object’s reference page.

 End-to-End Radar System

5-3

End-to-End Radar System

In this section...

“Radar Scenario” on page 5-3
“Waveform” on page 5-3
“Antenna” on page 5-4
“Target Model” on page 5-4
“Antenna and Target Platforms” on page 5-4
“Modeling the Transmitter” on page 5-5
“Modeling Waveform Radiation and Collection” on page 5-6
“Modeling the Receiver” on page 5-6
“Modeling the Propagation Environment” on page 5-6
“Implementing the Basic Radar Model” on page 5-7

Radar Scenario

This example shows how to apply the basic toolbox workflow to the following scenario:
Assume you have a single isotropic antenna operating at 4 GHz. Assume the antenna
is located at the origin of your global coordinate system. There is a target with a
nonfluctuating radar cross section of 0.5 square meters initially located at [7000;
5000; 0]. The target moves with a constant velocity vector of [-15;-10;0]. Your
antenna transmits ten rectangular pulses with a duration of 1 microsecond at a pulse
repetition frequency (PRF) of 5 kHz. The pulses propagate to the target, reflect off the
target, propagate back to the antenna, and are collected by the antenna. The antenna
operates in a monostatic mode, receiving only when the transmitter is inactive.

Waveform

To build the waveform described in “Radar Scenario” on page 5-3, use
phased.RectangularWaveform and set the properties to the desired values.

hwav = phased.RectangularWaveform('PulseWidth',1e-6,...

 'PRF',5e3,'OutputFormat','Pulses','NumPulses',1);

See “Rectangular Pulse Waveforms” for more detailed examples on building waveform
models.

5 Basic Radar Workflow

5-4

Antenna

To model the antenna described in “Radar Scenario” on page 5-3, use
phased.IsotropicAntennaElement. Set the operating frequency range of the antenna
to [1,10] GHz. The isotropic antenna radiates equal energy for azimuth angles from –180
to 180 degees and elevation angles from –90 to 90 degrees.

hant = phased.IsotropicAntennaElement('FrequencyRange',...

 [1e9 10e9]);

Target Model

To model the target described in “Radar Scenario” on page 5-3, use
phased.RadarTarget. The target has a nonfluctuating RCS of 0.5 square meters and
the waveform incident on the target has a carrier frequency of 4 GHz. The waveform
reflecting off the target propagates at the speed of light. Parameterize this information in
defining your target.

htgt = phased.RadarTarget('Model','Nonfluctuating',...

 'MeanRCS',0.5,'PropagationSpeed',physconst('LightSpeed'),...

 'OperatingFrequency',4e9);

Antenna and Target Platforms

To model the location and movement of the antenna and target in “Radar Scenario” on
page 5-3, use phased.Platform.

The antenna is stationary in this scenario and is located at the origin of the global
coordinate system. The target is initially located at [7000; 5000; 0] and moves with a
constant velocity vector of [-15;-10;0].

htxplat = phased.Platform('InitialPosition',[0;0;0],...

 'Velocity',[0;0;0],'OrientationAxes',[1 0 0;0 1 0;0 0 1]);

htgtplat = phased.Platform('InitialPosition',[7000; 5000; 0],...

 'Velocity',[-15;-10;0]);

For definitions and conventions regarding global and local coordinates, see “Global and
Local Coordinate Systems”.

Use rangeangle to determine the range and angle between the antenna and the target.

 End-to-End Radar System

5-5

[tgtrng,tgtang] = rangeangle(htgtplat.InitialPosition,...

 htxplat.InitialPosition);

See “Motion Modeling in Phased Array Systems” for more details on modeling motion.

Modeling the Transmitter

To model the transmitter specifications, use phased.Transmitter. A key parameter
in modeling a transmitter is the peak transmit power. To determine the peak transmit
power, assume that the desired probability of detection is 0.9 and the maximum tolerable
false-alarm probability is 10–6. Assume that the ten rectangular pulses are noncoherently
integrated at the receiver. You can use albersheim to determine the required signal-to-
noise ratio (SNR).

Pd = 0.9;

Pfa = 1e-6;

numpulses = 10;

SNR = albersheim(Pd,Pfa,10);

The required SNR is approximately 5 dB. Assume you want to set the peak transmit
power in order to achieve the required SNR for your target at a range of up to 15 km.
Assume that the transmitter has a 20 dB gain. You can use radareqpow to determine
the required peak transmit power.

maxrange = 1.5e4;

lambda = physconst('LightSpeed')/4e9;

tau = hwav.PulseWidth;

Pt = radareqpow(lambda,maxrange,SNR,tau,'RCS',0.5,'Gain',20);

The required peak transmit power is approximately 45 kilowatts. To be conservative,
use a peak power of 50 kilowatts in modeling your transmitter. To maintain a constant
phase in the pulse waveforms, set the CoherentOnTransmit property to true. Because
you are operating the transmitter in a monostatic (transmit-receive) mode, set the
InUseOutputPort property to true to keep a record of the transmitter status.

htx = phased.Transmitter('PeakPower',50e3,'Gain',20,...

 'LossFactor',0,'InUseOutputPort',true,...

 'CoherentOnTransmit',true);

See “Transmitter” for more examples on modeling transmitters and “Radar Equation” for
examples involving the radar equation.

5 Basic Radar Workflow

5-6

Modeling Waveform Radiation and Collection

To model waveform radiation from the array, use phased.Radiator. To model
narrowband signal collection at the array, use phased.Collector. For wideband signal
collection, use phased.WidebandCollector.

In this example, the pulse satisfies the narrowband assumption around the carrier
frequency of 4 GHz. For the value of the Sensor property, use the handle for the
isotropic antenna. In phased.Collector, setting the Wavefront property to 'Plane'
assumes the waveform incident on the antenna is a plane wave.

hrad = phased.Radiator('Sensor',hant,...

 'PropagationSpeed',physconst('LightSpeed'),...

 'OperatingFrequency',4e9);

hcol = phased.Collector('Sensor',hant,...

 'PropagationSpeed',physconst('LightSpeed'),...

 'Wavefront','Plane','OperatingFrequency',4e9);

Modeling the Receiver

To model the receiver in “Radar Scenario” on page 5-3, use
phased.ReceiverPreamp. In the receiver, you specify the noise figure and reference
temperature, which are key contributors to the internal noise of your system. In this
example, set the noise figure to 2 dB and the reference temperature to 290 degrees
kelvin. Seed the random number generator for reproducible results.

hrec = phased.ReceiverPreamp('Gain',20,'NoiseFigure',2,...

 'ReferenceTemperature',290,'SampleRate',1e6,...

 'EnableInputPort',true,'SeedSource','Property','Seed',1e3);

See “Receiver Preamp” for more details.

Modeling the Propagation Environment

To model the propagation environment in “Radar Scenario” on page 5-3, use
phased.FreeSpace. You can model one-way and two-propagation by setting the
TwoWayPropagation property. In this example, set this property to false to model one-
way propagation.

hspace = phased.FreeSpace(...

 'PropagationSpeed',physconst('LightSpeed'),...

 End-to-End Radar System

5-7

 'OperatingFrequency',4e9,'TwoWayPropagation',false,...

 'SampleRate',1e6);

See “Free Space Path Loss” for more details.

Implementing the Basic Radar Model

Having parameterized all the necessary components for the model outlined in “Radar
Scenario” on page 5-3, you are ready to generate the pulses, propagate the pulses to
and from the target, and collect the echoes.

The following code prepares for the main simulation loop.

% Time step between pulses

T = 1/hwav.PRF;

% Get antenna position

txpos = htxplat.InitialPosition;

% Allocate array for received echoes

rxsig = zeros(hwav.SampleRate*T,numpulses);

You can execute the main simulation loop with the following code:

for n = 1:numpulses

 % Update the target position

 [tgtpos,tgtvel] = step(htgtplat,T);

 % Get the range and angle to the target

 [tgtrng,tgtang] = rangeangle(tgtpos,txpos);

 % Generate the pulse

 sig = step(hwav);

 % Transmit the pulse. Output transmitter status

 [sig,txstatus] = step(htx,sig);

 % Radiate the pulse toward the target

 sig = step(hrad,sig,tgtang);

 % Propagate the pulse to the target in free space

 sig = step(hspace,sig,txpos,tgtpos,[0;0;0],tgtvel);

 % Reflect the pulse off the target

 sig = step(htgt,sig);

 % Propagate the echo to the antenna in free space

 sig = step(hspace,sig,tgtpos,txpos,tgtvel,[0;0;0]);

 % Collect the echo from the incident angle at the antenna

 sig = step(hcol,sig,tgtang);

 % Receive the echo at the antenna when not transmitting

 rxsig(:,n) = step(hrec,sig,~txstatus);

end

5 Basic Radar Workflow

5-8

Noncoherently integrate the received echoes, create a vector of range gates, and plot the
result. The red vertical line on the plot marks the range of the target.

rxsig = pulsint(rxsig,'noncoherent');

t = unigrid(0,1/hrec.SampleRate,T,'[)');

rangegates = (physconst('LightSpeed')*t)/2;

plot(rangegates,rxsig); hold on;

xlabel('Meters'); ylabel('Power');

ylim = get(gca,'YLim');

plot([tgtrng,tgtrng],[0 ylim(2)],'r');

